Uma equação é uma expressão matemática que possui em sua composição incógnitas, coeficientes, expoentes e um sinal de igualdade. As equações são caracterizadas de acordo com o maior expoente de uma das incógnitas. Veja:
- 2x + 1 = 0. O expoente da incógnita x é igual a 1. Dessa forma, essa equação é classificada como do 1º grau.
- 2x² + 2x + 6 = 0. Há duas incógnitas x nessa equação, e uma delas possui expoente 2. Essa equação é classificada como do 2º grau.
- x³ – x² + 2x – 4 = 0. Nesse caso, temos três incógnitas x, e o maior expoente – no caso, expoente 3 – torna a equação como do 3º grau.
O que são raízes ou soluções de uma equação do 2º grau?
Cada modelo de equação possui uma forma de resolução. Trabalharemos a forma de resolução de uma equação do 2º grau por meio do método de "Bhaskara". Determinar a solução de uma equação é o mesmo que descobrir suas raízes, isto é, o valor ou os valores que satisfazem a equação. As raízes da equação do 2º grau x² – 10x + 24 = 0, por exemplo, são x = 4 ou x = 6, pois:
Substituindo x = 4 na equação, temos:
x² – 10x + 24 = 0
4² – 10 * 4 + 24 = 0
16 – 40 + 24 = 0
–24 + 24 = 0
0 = 0 (verdadeiro)
4² – 10 * 4 + 24 = 0
16 – 40 + 24 = 0
–24 + 24 = 0
0 = 0 (verdadeiro)
Substituindo x = 6 na equação, temos:
x² – 10x + 24 = 0
6² – 10 * 6 + 24 = 0
36 – 60 + 24 = 0
– 24 + 24 = 0
0 = 0 (verdadeiro)
6² – 10 * 6 + 24 = 0
36 – 60 + 24 = 0
– 24 + 24 = 0
0 = 0 (verdadeiro)
Podemos verificar que os dois valores satisfazem a equação, mas como podemos determinar os valores que tornam a equação uma sentença verdadeira? É essa forma de determinar os valores desconhecidos que abordaremos a seguir.
Método de Bhaskara
Vamos determinar pelo método resolutivo de Bhaskara os valores da seguinte equação do 2º grau: x² – 2x – 3 = 0.
Nenhum comentário:
Postar um comentário